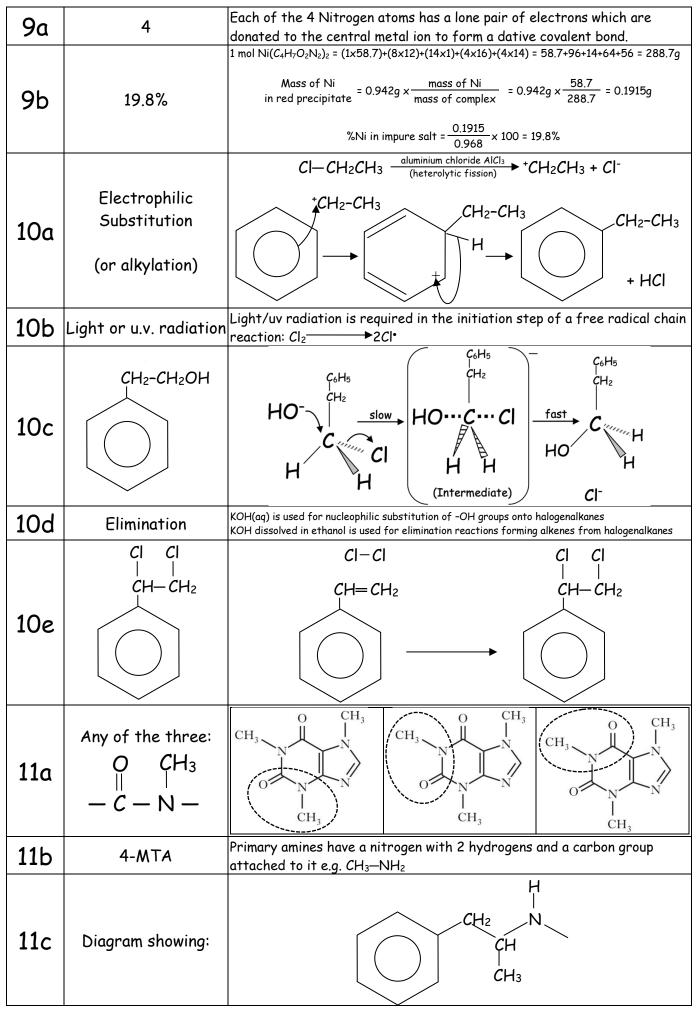


2013 Marking Scheme

Grade	Mark Re	equired	° condidates cohieving and
Awarded	(/ ₁₂₅)	%	% candidates achieving grade
A	87+	69.6%	31.6%
В	74+	59.2%	26.6%
С	61+	48.8%	21.4%
D	54+	43.2%	9.9%
No award	<54	< 43.2%	12.1%

Section:	Multiple Choice		Extended A	nswer	Investigation	
Average Mark:	28.0	/40	33.5	/60	15.2	/25

20)13 A	٩dv	Higher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	С	90	 A Each Ionisation Energy removes only one mole of electrons B Each Ionisation Energy removes only one mole of electrons C Removal of one mole of electrons from one mole of 1+ gaseous ions D Each Ionisation Energy removes only one mole of electrons
2	В	77	EM Radiation Gamma X-ray UV Visible Infrared Microwave Radio & TV Velocity $3 \times 10^8 m s^{-1}$
3	A	74	 Δ A Copper (II) Sulphate gives blue-green flame colour (λ=325nm) highest frequency B Potassium Chloride gives lilac flame colour (λ=405nm) C Barium Chloride gives green flame colour (λ=554nm) D Lithium Sulphate gives crimson flame colour (λ=671nm) lowest frequency
4	D	62	$ \begin{array}{ c c c c c c } \hline Colour & Violet & Indigo & Blue & Green & Yellow & Orange & Red \\ \hline Velocity & 3x10^8m s^{-1} & 3x10^8m$
5	D	70	 A Pauli Exclusion Principle: No electron has the same 4 quantum numbers B Heisenberg Uncertainty: momentum and position of an electron cannot be defined at same instant C Aufbau principle: Orbitals fill up in order of lowest energy (15,25,2p,35,3p,45,3d,4p,55,4d,5p,65,4f, etc) D Hund's Rule: orbitals fill up single rooms first to maximise the number of parallel spins
6	A	62	 ☑A 3 electrons in 3rd shell ∴ element is in group 3 ☑B 5 electrons in 3rd shell ∴ element is in group 5 ☑C Incomplete d-shell ∴ element is a transition metal ☑D 5 electrons in 4th shell ∴ element is in group 5
7	С	60	 A Mass Spectroscopy: mass measured by the bending of charged particles in electric field B IR-spectroscopy: absorbed IR radiation of particular wavenumber vibrates particular bonds C Emission Spectroscopy: measuring wavelengths produced as excited electrons drop down energy levels D Proton NMR: flipping of hydrogen nuclei in a strong magnetic field using radio waves
8	A	61	\square A Molecule is Ozone $O = O^{+} - O^{-}$ \square B Oxygen atom on right has 10 electrons \square C Centre oxygen atom has 10 electrons \square D Molecule is not Ozone $O = O^{+} - O^{-}$
9	С	78	 A NH₃ contains 3 bonding pairs (N-H bonds) and a lone pair of electrons on the nitrogen B NCl₃ contains 3 bonding pairs (N-Cl bonds) and a lone pair of electrons on the nitrogen C NH₄⁺ ions contain a dative covalent bond (lone pair provides both electrons in bond) C H₂NH₂ contains 3 bonding pairs and a lone pair of electrons on the nitrogen
10	В	79	 ☑A 2 lone pairs (both on oxygen atom) ☑B 3 lone pairs (all on chlorine atom) ☑C 1 lone pairs (on nitrogen atom) ☑D 2 lone pairs (both on oxygen atom)
11	С	63	 ☑A SF₄ has 5 pairs (4 bonding and 1 non-bonding) ☑B NH₄⁺ has 4 pairs (4 bonding and 0 non-bonding) ∴ tetrahedral ☑C XeF₄ has 6 pairs (4 bonding and 2 non-bonding) ∴ square planar ☑D AIH₄⁻ has 4 pairs (4 bonding and 0 non-bonding) ∴ tetrahedral


<u> </u>	-		
			A Metal conductivity decreases as temperature rises
12	C	82	B Ionic solids do not conduct in the solid state so conductivity will remain zero
	\sim		C Semiconductor conductivity increases as temperature rises
			Superconductor conductivity decreases as temperature rises
	-		⊠A NH₃ contains polar covalent bonds and is not ionic
13	D	76	■B HCl is a polar covalent gas and forms hydrogen H ⁺ ions on dissolving in water
10	U	10	$\mathbf{E}C$ H ₂ S is a covalent molecule due to similar electronegativities of H and S
			✓D Ca ²⁺ (H ⁻) ₂ is ionic and contains hydride H ⁻ ions
	_		\blacktriangleright A Cu ²⁺ ions \rightarrow Cu metal (oxidation state: 2 \rightarrow 0)
14	B	69	\square B Cu ²⁺ ions \rightarrow Cu ²⁺ ions in a complex with NH ₃ (oxidation state: 2 \rightarrow 2)
			EC Cu^{2+} ions $\rightarrow Cu^{+}$ ions (oxidation state: 2 \rightarrow 1)
			E D Cu metal \rightarrow Cu ²⁺ ions (oxidation state: $0\rightarrow 2$) Ag ⁺ ion n o. of mol = volume × concentration = 0.1 litres × 0.500 mol l ⁻¹ = 0.05 mol
			$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$
15	Λ	51	1mol 1mol
15	A	J1	0.05mol 0.05mol
			1mol AgCl = 107.9+35.5 = 143.4g mass = no. of mol × gfm = 0.05mol × 143.4g = 7.17g
			n o. of mol = volume x concentration = 11itre x 0.01mol l^{-1} = 0.01mol
16	C	46	$1 \times \text{Ni}(\text{H}_2\text{O})_6.\text{K}_2(504)_2$ contains $1 \times \text{Ni}(\text{H}_2\text{O})_6$ ion complex, $2 \times \text{K}^+$ ions & $2 \times 504^{2^-}$ ions = 5 ions
10			∴0.01mol of Ni(H2O)6.K2(SO4)2 contains 0.05mol of ions
	_		no. of mol K* ions = volume x concentration = 1 litre x 0.1 mol l ⁻¹ = 0.1 mol K* ions
17	B	54	1 mol K ₂ SO ₄ contains 2 mol K ⁺ ions \therefore 0.05 mol K ₂ SO ₄ contains 0.1 mol K ⁺ ions
			volume = $\frac{n_0. \text{ of mol}}{\text{concentration}}$ = $\frac{0.05 \text{ mol}}{0.2 \text{ mol } l^{-1}}$ = 0.25 litres = 250cm ³
			🗷 A Catalysts do not alter the position of equilibrium
10	~	00	⊠B Adding acid will move equilibrium to left to remove the additional product (H⁺)
18	C	80	☑C OH ⁻ ions neutralise H ⁺ ions and equilibrium will move to right to replace H ⁺ ions
			⊠D Adding dihydrogenphosphate ions (H₂PO₄ ⁻) will move equilibrium to left
			☑A increasing temperature alters the solubilities of caffeine in each solvent differently
19	٨	01	B adding more caffeine will not alter the proportion of caffeine in the solvents
12	A	91	$oxtimes \mathcal{C}$ increasing the volume of a solvent does not alter the final concentration of caffeine
			ED increasing the volume of a solvent does not alter the final concentration of caffeine
20	N	05	positive coefficient $ [X]_{hexane} = 13 $
20	υ	85	partition coefficient = $\frac{[X]_{hexane}}{[X]_{water}} = \frac{13}{6} = 2.17$
		1	EA pH of ethanoic acid will increase towards pH=7 during dilution
24	n	D 72	☑B [H ⁺] will decrease and pH increases towards pH=7 during dilution
21	В	72	$\blacksquare C pK_a$ is a measure of the degree of dissociation and dilution does not alter pK_a
			D Dilution does not alter the degree of dissociation
			Ethanoate CH3COO ⁻ ions join up with H ⁺ ions and form molecules of ethanoic acid CH3COOH
22		71	as ethanoic acid is a weak acid. The removal of H^{\star} ions from the equilibrium will result in the
66	υ	1/1	equilibrium moving to left to replace these H^{\star} ions and this results in more reverse reaction
			and less products in the mixture (less iodine)
22	A	01	Potassium hydroxide and ethanoic acid will neutralise to form potassium ethanoate
23	A	81	and will have an alkaline pH. The indicator chosen should have a pH range which
			changes colour in the alkaline region of the pH scale.
			\blacksquare A s-r = difference in activation between uncatalysed and catalysed reactions
24	В	76	☑B p+s = activation energy for the reverse uncatalysed reaction
			$\mathbf{E}C$ q-p = activation energy for the forward catalysed reaction
			D p+r = activation energy for the reverse catalysed reaction
			$\Delta H = \Sigma(\text{bonds broken}) - \Sigma(\text{bonds formed})$
25	В	ΛΔ	$\Delta H = 12x X - X \text{ bonds} - 4x X = X \text{ bonds}$ $\Delta H = 12x 163 - 4x 944$
20	D	46	$\Delta H = 122103$ - 42.944 $\Delta H = 1956$ - 3776
			$\Delta H = -1820 \text{ kJ mol}^{-1}$
		I	

			• $2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$ Enthalpy of formation for ethane (data required)
26	C	51	$\mathbf{O} \times -1 \qquad \qquad C_2 H_{4(g)} \longrightarrow 2C(s) + 2H_{2(g)}$
26	C	10	$ \mathbf{O} \times 1 \qquad \mathbf{O}_{2} (\mathbf{q}) \rightarrow \mathbf{C}_{3} (\mathbf{q}) $
			$\bullet x^2 \qquad \qquad H_2(q) \longrightarrow 2H(q)$
			Equals the bond enthalpies for:
			$\begin{array}{ccc} \bullet' + \bullet' & C_2H_4(g) \longrightarrow 2C(g) + 4H(g) & & 4 \times C - H & + & 1 \times C = C \\ & & & & & & & (\text{data required}) & to be calculated \end{array}$
			■A Gas turning into solid = decrease in disorder ∴ decrease in entropy
27	В	87	☑B Combustion into gas products = increase in disorder ∴ increase in entropy ☑C 2 reactants becoming one product = decrease in disorder ∴ decrease in entropy
			■D many monomers →one polymer = decrease in disorder ∴ decrease in entropy
	•		■ A mpt NaCl = 801°C ∴ NaCl is a solid at 750°C ∴ solid have lower disorder/entropy
28	D	57	■B mpt CaCl ₂ = 775°C ∴ CaCl ₂ is a solid at 750°C ∴ solid have lower disorder/entropy ■C mpt KCl = 770°C ∴ KCl is a solid at 750°C ∴ solid have lower disorder/entropy
			☑D mpt MgCl₂= 714°C ∴ MgCl₂ is a liquid at 750°C ∴ liquids have higher disorder/entropy
			Oxidation is one of the following reactions: primary alcohol ———— aldehyde ———— carboxylic acid
29	7	82	secondary alcohol
69	U	02	tertiary alcohol → ★ → Butan-1-ol is a primary alcohol and butanoic acid is a carboxylic acid.
			Reduction is the reverse reaction of oxidation.
			• Substitution Reaction $\begin{array}{c} CH_3CH_2CH_2OH \longrightarrow CH_3CH_2CH_2CI \\ Propan-1-ol & 1-chloropropane \end{array}$
30	Δ	87	
		07	1-chloropropane propene
			Substitution of $CH_3O^ CH_3CH_2CH_2CI \rightarrow CH_3CH_2CH_2OCH_3$ 1-chloropropane methoxypropane
			ң ң ң
			Br⊢Br → ⊕Br
			C C
	6	70	H [°] CH ₃ H [°] CH ₃
31	D	/9	
			Br C
			Br→
			C ² C
			H CH ₃ H CH ₃
			H [*] CH ₃ CH ₃

			A Initiation Step: Free radicals formed in reaction and found after the arrow						
32 A	93	☑B Termination Step: free radicals joining up to form a molecule ☑C Propagation Step: Chain reaction with free radicals being used up and created							
-		/0			-	•			
			D Propagation Step: Chain reaction						
			A Pentanal C4H9CHO does not conta	• •	-	•			
33	B	77	☑B Pentan-2-ol CH3CH(OH)C3H7 conto ☑C Pentan 2 and CLL COC LL dood not	• •		•			
			≌C Pentan-2-one CH₃COC₃H7 does not ≌D Ethoxypropane C₂H₅OC₃H7 does n	•	5 5	•			
			Answer A		varogen bonaing	D			
			Alltenal	ь kanoic Acid	Alkanols	Ethers			
24	2	70		arboxylic Acids)	(Alcohols)				
34	D	79	Example $C_2H_5CHO = C_3H_6O$ C_2H_5CHO	panoic acid 00H = C3H402	Propan-1-ol C3H7OH = C3H8O	Methyoxyethane CH3OC2H5 = C3H8O			
			Correct CHOC		$C_nH_{2n+2}O$	$C_nH_{2n+2}O$			
						Cn1 12n+20			
25	7	61	Propan-2-ol CH₃CH(OH)CH₃ ∴ R g	• •					
35	D	61	2-chlorobutane CH3CHClCH2CH3∴R' (Ethon D. O. D' = CH2CH(CH2) O. (5 1					
			∴ Ether R—O—R' = CH ₃ CH(CH ₃)— O —C ⊠A alcohols are neutral pH=7 ∴ not strong		×F 13				
			■A alcohois are hearing pri-7 not strongest base	-					
36	C	63	☑C primary amines are alkaline and a stronger base than phenylamine C ₆ H ₅ NH ₂						
			\mathbf{Z} D electrons in lone pair on N in C ₆ H ₅ NH	5	• •				
			ring making lone pair electrons less li						
27	~	20	$C_6H_5NH_2 + HCI \longrightarrow C_6H_5NH_3^+CI^-$						
37	D	28	phenylamine C6M5INM3 CI						
			Nitronium ion formed by: HNO	0 ₃ + H ₂ SO ₄ -	→ NO ₂ ⁺ + H ₃ O ⁺	+ 2HSO₄ ⁻			
			nitronium						
			ion NO2 ⁺						
		D (1		\sim 1	10 2 /				
20	D		conc			∽NO₂			
38	В	61		1	$H \mid ()$)			
						/			
				+					
			H ₂ 504						
			H ₂ 504	enzenenium					
			H2504 benzene nitrobe	enzenenium nediate ion	nitrobenze	ine			
			H2504 benzene nitrobe	nediate ion					
30		50	H2504 benzene nitrobe interm	nediate ion across C=C b	onds and other π				
39	A	50	H2504 benzene MA Addition: small molecules added a B Oxidation: increase in the oxygen C Elimination: small molecule remove	nediate ion across C=C b a:hydrogen ro ed (e.g. H2O)	onds and other π ntio and C=C bond le	-bonds			
39	A	50	H2504 benzene MA Addition: small molecules added a B Oxidation: increase in the oxygen C Elimination: small molecule remove D Substitution: swapping of atoms/g	nediate ion across C=C b ::hydrogen ro ed (e.g. H2O) groups on an	onds and other π htio and C=C bond le d off a molecule	-bonds ft behind			
39	A	50	H2504 benzene MA Addition: small molecules added a B Oxidation: increase in the oxygen C Elimination: small molecule remove D Substitution: swapping of atoms/ A Nucleophiles are species which ar	nediate ion across C=C b a:hydrogen ro ed (e.g. H2O) groups on an re attracted	onds and other π tio and C=C bond le <u>d off a molecule</u> to centres of pos	-bonds ft behind sitive charge			
	A	50	H2504 benzene MA Addition: small molecules added a B Oxidation: increase in the oxygen C Elimination: small molecule remove D Substitution: swapping of atoms/ A Nucleophiles are species which an B Electrophiles are species which an	nediate ion across C=C b a:hydrogen ro ed (e.g. H2O) groups on an re attracted re attracted	onds and other π atio and C=C bond le d off a molecule to centres of pos to centres of ne	-bonds ft behind sitive charge			
39 40	A	50 93	H2504 benzene A Addition: small molecules added a B Oxidation: increase in the oxygen C Elimination: small molecule remove D Substitution: swapping of atoms/o A Nucleophiles are species which an B Electrophiles are species which an B Electrophiles are species which and C Free Radicals are species with unp	nediate ion across C=C b hydrogen ro ed (e.g. H2O) groups on an re attracted re attracted paired electr	onds and other π ttio and C=C bond le d off a molecule to centres of pos to centres of ne rons	-bonds ft behind sitive charge gative charge			
	A	50 93	H2504 benzene MA Addition: small molecules added a B Oxidation: increase in the oxygen C Elimination: small molecule remove D Substitution: swapping of atoms/ A Nucleophiles are species which an B Electrophiles are species which an	nediate ion across C=C b whydrogen ro ed (e.g. H2O) groups on an re attracted re attracted paired electr d in cell walls	onds and other π tio and C=C bond le <u>d off a molecule</u> to centres of pos to centres of ne ons with specific sho	-bonds ft behind sitive charge gative charge			

2013 Adv Higher Chemistry Marking Scheme									
Long Qu	Answer	Reasoning							
1a	Any group 3 element e.g. B, Al, Ga, In, Tl	SemiconductorDoped WithDescriptionp-typeGroup 3 elementPositive hole can migrate across semiconductorn-typeGroup 5 element5th electron can migrate across semiconductor							
1b	Positive hole	The group 3 element has three outer electrons and there is a positive hole left in the space where the 4 th bond would be in the semiconductor.							
2a	-220.3 J K ⁻¹ mol ⁻¹	$\Delta S^{\circ} = \sum S^{\circ}_{(products)} - \sum S^{\circ}_{(reactants)}$ $= (2\times27.0) + (1\times5.70) - ((2\times33.0) + (1\times214))$ $= 54.0 + 5.7 - (66.0 + 214)$ $= 59.7 - 280$ $= -220.3 \text{ J K}^{-1} \text{ mol}^{-1}$							
2b	-526.4 kJ mol ⁻¹	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
3a	$Rb_{(s)} + \tfrac{1}{2}Cl_{2(g)} \to RbCl_{(s)}$	<u>Enthalpy of Formation</u> : The enthalpy change for the formation of 1 mole of a substance from its elements in there natural state							
3b	-349 kJ mol ⁻¹	1 st Electron Affinity of Chlorine: $Cl_{(g)} + e^- \rightarrow Cl^{(g)}$							
3c	(Enthalpy of) Lattice Formation	Acceptable answers include: (enthalpy of) lattice formation Lattice Lattice energy Crystal Lattice							
3d	-697.5 kJ mol ⁻¹	$\begin{array}{rcl} \Delta H_6 &=& \Delta H_1 &+& \Delta H_2 &+& \Delta H_3 &+& \Delta H_4 &+& \Delta H_5 \\ \hline \text{Enthalpy of } &=& \text{Enthalpy of } &=& \text{Bond } \\ \text{Formation of } &=& \text{sublimation } +& \text{enthalpy of } \\ \text{Rbcl} &=& \text{of Rb} &+& \text{enthalpy of } \\ \hline -435 &=& 81 &+& 121.5 &+& 409 &+& (-349) &+& \Delta H_5 \\ \hline -435 &=& & 262.5 &+& \Delta H_5 \\ \hline \Delta H_5 &=& -435 &-& 262.5 &=& -697.5 \text{ kJ mol}^{-1} \end{array}$							
4a	Answer to include:	A series of standard solutions of different known concentrations of potassium permanganate are made up and their absorbencies measured.							
4b	Green or 500-560nm	The solutions appear purple as the green light is removed by atomic adsorption and the red and blue light is transmitted giving a purple colour.							
4c	Nitrogen dioxide	Also acceptable: dinitrogen tetroxide, nitrogen monoxide (nitric oxide)							
4d	296 kJ mol ⁻¹	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{ mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s } \times 3 \times 10^8 \text{ m s}^{-1}}{405 \times 10^{-9} \text{ m}}$							
5a	One answer from: blue green cyan blue/green turquoise	650nm is coloured red in visible spectrum so red wavelengths are absorbed by the complex and green / blue colours are transmitted.							
5b	1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁷	Cobalt atoms have electronic configuration: 1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁷ 4s² Cobalt Co²+ ions have electronic configuration: 1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁷ or [Ne] 3s² 3p ⁶ 3d ⁷							

		\mathbf{T} (\mathbf{A}) (\mathbf{A}) (\mathbf{A}) (\mathbf{A})								
		Tetrachloridocobaltate (II) = [Co(Cl) ₄] ²⁻								
		no. of chloride metal negative Charge on								
5.	$\Gamma C_{-}(CI) = 12-$	ligands ion ligand name complex metal ion								
5c	[<i>C</i> o(<i>C</i> l) ₄] ²⁻	Neutral ligands include: Negative Ligands include: Central Ion: Charge: Description Charge Ligand Name Positive Complex: Charge of								
		Ligaria Name Ligaria Marie metals keep their name central ion is								
		NH2 ammine Cvanide CN1 cvanido								
		Image: Column and the column								
		pH = ½pKa - ½log10 c								
60	2,935	$= (\frac{1}{2} \times 4.87) - \frac{1}{2} \times \log_{10}(0.1)$								
6a	2.955	= 2.435 - (-0.5)								
		= 2.935								
		concentration = $\frac{\mathbf{n}_0. \text{ of mol}}{\mathbf{v}_0 \text{ lume}}$ = $\frac{0.20 \text{ mol}}{0.1 \text{ litres}}$ = 2 mol l ⁻¹								
6b	6.17	pH = pK _a - log <u>[acid]</u> = 4.87 - log <u>0.10 mol l⁻¹</u> = 4.87 - log(0.05)								
		= 4.87 - (-1.301)								
		$= 6.17$ $\bigcirc Cr^{3+} + 3e^{-} \rightarrow Cr \qquad E^{\circ}= -0.74V$								
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
7a	0.29V	$\textbf{0} \text{x-1} \qquad \qquad \textbf{Cr} \rightarrow \textbf{Cr}^{3*} + \textbf{3e}^{-} \qquad \qquad \textbf{E}^{\circ} \text{= +0.74V}$								
7u	0.29V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
		$0'+0' + Cr + 1\frac{1}{2}Fe^{2+} \rightarrow Cr^{3+} + 1\frac{1}{2}Fe = E^{\circ} = +0.29V$								
		3mol of electrons transferred between half reactions ∴ n=3								
		$\Delta G^{\circ} = -n \times F \times E^{\circ}$								
7b	-84.0 kJ mol ⁻¹	$= -3 \times 96500 \text{ C mol}^{-1} \times 0.29 \text{ V}$								
		= - 83955 J mol ⁻¹ = - 84.0 kJ mol ⁻¹								
_		Aluminium as $\Sigma \Delta G^{\circ}$ is negative for: $^{2}/_{3}Cr_{2}O_{3} \rightarrow ^{4}/_{3}Cr + O_{2}$ and $^{4}/_{3}AI + O_{2} \rightarrow ^{2}/_{3}AI_{2}O_{3}$								
7c	Answer to include:	or								
		Overall $\Sigma \Delta G^{\circ}$ is negative for (redox) reaction: $^{2}/_{3}Cr_{2}O_{3} + ^{4}/_{3}AI \rightarrow ^{4}/_{3}Cr + ^{2}/_{3}AI_{2}O_{3}$ $[C_{4}H_{9}Br]/mol l^{-1}$ [NaOH]/mol l^{-1}Initial Rate/mol l^{-1} s^{-1}								
80(1)	1 or 1 st order	8.0×10 ⁻⁴ 0.10 0.15								
8 a(i)		1.6x10 ⁻³ 0.10 0.30								
		Doubling [C4H9Br] doubles the rate ∴ first order kinetics [C4H9Br]/mol l ⁻¹ [C4H9Br]/mol l ⁻¹								
8a(ii)	Zero or no order	1.6x10 ⁻³ 0.10 0.15								
		1.6×10⁻³0.200.30Doubling [NaOH] does not change the rate ∴ zero order kinetics								
8b	Rate=k[C4H9Br]	Rate = k[C4H9Br] ¹ [NaOH] ^o = k[C4H9Br]								
8c	187.5 s ⁻¹	rate = $k[C_4H_9Br]$: $k = \frac{rate}{[C_4H_9Br]} = \frac{0.15 \text{ mol } l^{-1} \text{ s}^{-1}}{8 \times 10^{-4} \text{ mol } l^{-1}} = 187.5 \text{ s}^{-1}$								
	2-bromo-2-methylpropane	1-bromobutane2-bromobutane1-bromo-2-methylpropane2-bromo-2-methylpropaneC3H7C2H5CH3CHCH3CH3								
8d(i)	(2-bromomethylpropane)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
	Or tertiary structure									
	•	Br H Br CH Br CH								
	Tertiary halogenalkanes	H CH3 H CH3 primary halogenalkane secondary halogenalkane primary halogenalkane tertiary halogenalkane								
84()	form more stable carbocation intermediates	Primary and secondary halogenalkanes react with NaOH by SN2 mechanism. 2 particles are SN1 mechanism. Carbocations are								
8d(ii)	due to steric hindrance of	involved in the rate determining step where the nucleophilic species (OH) and tacks the nucleophilic species (OH)								
	the tertiary structure	central carbon due to the lack of steric hindrance of primary/secondary structure. attacks the planar carbocation intermediate to form alkanol								

	(conc) phosphoric acid								
12a	or orthophosphoric acid	PPA Technique Question							
12b(i)	One answer from:	It is denser	than water rate more quickly		Layers separate better Layers settle more quickly			eous layer is more et a better separ	
12b(ii)	Separating Funnel	· · · · ·	ner acceptable names: Separatory Funnel, Separation Funnel						
			Chemical		Group Detec	cted	Absorl	bance	
12c	One answer from		Cyclohexene Cyclohexene		C=C stret C-H stretch in		1620 to 1 3095 to 3		
			Cyclohexanol		0-H stret		3200 to 3		
	H H C=C	cis-geometric isomers have groups on same side of C=C double bond							
13a	H ₃ C C ₂ H ₅ cis-pent-2-ene				5				
150	H₃C H						:		
	H C2H5 trans-pent-2-ene	trans-geol	metric isomers ho	ive <u>c</u>	groups on of	oposite s	ides of	C=C double do	nd
4.01			l Permanganate	-	-			•	
13b	pentan-2-one	•	d A (pentan-2-o ne pentan-2-one	•	s a secondo	ary alcol	nol and	oxidises to l	become
13c(i)	Addition	H-CN is a	added across th	e C	=0 carbon	yl group	of pen	tan-2-one	
13c(ii)	$\begin{array}{ccccc} & OH & H & H \\ & & & I & I \\ H_3C - C - C - C - C - CH_3 \\ & & & I \\ C \equiv N & H & H \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
13d	$H_{3}C - C - C - C - C - CH_{3}$		lrins hydrolyse i arboxyl —COOF			ce of ac	id and 1	he —C≡N gr	oups
			oon in CO2 = ¹² /44 × 11.8 rogen in H2O = ² /18 × 6.						
			gen = 5g - (3.243+0.67)		5 - 3.919 = 1.08			0	1
			Elements Mass or %		C 3.243q		H 076g	0 1.081g	-
14a	$C_4H_{10}O$		Divide by RAM	٨	3.243g 12g mol ⁻¹ = 0.270mol	<u>0.</u> 1g	576 <u>g</u> mol ⁻¹ 76mol	<u>1.081g</u> 16g mol ⁻¹ = 0.0676mol	
			Divide through l		0.270mol 0.0676mol		76mol 76mol	0.0676mol 0.0676mol	
		smallest number			= 4		10 10	1	-
14b	C – O stretch	Alkyl eth	Empirical Formu ers C—O bonds				-)cm ⁻¹
14c	C4H10O	<i>C</i> ₄ H ₁₀ O = (4x12)+(10x1)+(1x16) = 48 + 10 + 16 = 74							
		Possible	C4H10O ether st	ruc	tures:				
	Ethoxyethane	Ethoxyethane methoxypropane							
14d	Or		CH3CH2OC	:H ₂ (CH3 Relative Intensity	CH- Chemical Shift	I3OCH2	CH2CH3 Relative Intensity	_
	$C_2H_5OC_2H_5$		0.9-1.5 -CH₃ 3.5-3.9 R-CH₂-0) -	3 2	0.9-1.5 3.5-3.9	-CH R-CH2-	3 3	